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Abstract

Historically, design and integration of a new architectural feature requires time consum-

ing full system verification/validation. This challenge is particularly serious for the research

and development of multi-/many-core chips due to the scale of the chip and time-to-market

constraints. We conducted a logic design and integration of a new architecture feature,

called Synchronization State Buffer (SSB) into the IBM Cyclops-64 (C64) many-core ar-

chitecture logic. We used DEEP, a FPGA-based emulation platform that was developed

for the purpose of hardware/software co-verification of the C64 chip. Our experiences have

demonstrated the following key features are critical to achieve our objectives:

Fast compilation of the logic design is very important during the early stages of the logic

design to allow for quick turn-around times. To this end, the full C64 chip logic can be

compiled under two minutes for software simulation.

Full-System hardware emulation with debugging support is crucial for whole chip logic

verification - some deep, concurrency-related bugs may be exposed only after many cycles

of full chip parallel execution. DEEP’s emulation mode allows such bugs to be found very

fast - in minutes, which would have taken otherwise years with software simulation.

High-Speed hardware emulation (over 20KHz) of the whole system allows us to run

entire parallel applications. This allows the experimentation of novel program and code

generation paradigms within reasonable time.

Our experience show that future many-core research and development could greatly

benefit from advanced emulation paradigms as we have explored in this study.

1 Introduction

Historically, design and integration of a new architectural feature requires time consuming full

system verification/validation. This challenge is particularly serious for multi-/many-core chips

research and development, due to the scale of the chip and time-to-market constraints.

Currently, full-system verification still requires an armada of computers or expensive spe-

cialized hardware to achieve reasonable emulation speed. A cluster of computers can be made

easily available to a larger group of developers, but the overall emulation speed is still limited.

On the other side, specialized hardware is much faster, but it is a scarce resource. Faster and

cheaper hardware emulation and verification systems are needed to mitigate this problem.

The need for better and faster verification frameworks is growing even stronger with the

introduction of new execution models. These models provide feedback to hardware architects

about possible advantageous features. This results in a symbiotic relationship, which requires

hardware / software co-development, verification platforms and methodologies. As new and

more powerful many-core architectures rise, they bring current software stacks to the verge of

expandability. New execution models, operation systems and system software will be required.

Current modifications on software stacks made it work for the few cores which we have, but

at the expense of performance and portability. However, such changes will not be enough for

the coming future many-core architectures which may present anywhere between hundreds to

thousands of cores.
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Among the new many-core designs, we have the IBM Cyclops-64 (C64) many-core architec-

ture. The architecture consists of 160 homogeneous processing elements called Thread Units

(TUs). Two TUs share one Floating-Point Unit (FPU). Two TUs and one FPU build a logical

processor. The 80 processors are connected via a high speed crossbar interconnect. Each TU

controls a portion of the on-chip memory, which can be configured during boot-up into two

sections. One section is used as Scratch Pad memory, which can be accessed very fast by the

TU that owns it. The other TUs can still access all other TUs’ Scratch Pad, but they have

to go through the slower crossbar. The other section contributes to the Global Interleaved

SRAM, which is accessed by all TUs via the crossbar. The access to the Global Interleaved

SRAM is guaranteed to be sequentially consistent. The same cannot be guaranteed for the

Scratch Pad memory, due to the fast access of the TU that owns it. There are no data caches

on this architecture - only Instruction-Caches (ICs). The programmer has full control over the

memory hierarchy, which includes the Scratch Pad memory, the Global Interleaved SRAM and

the off-chip DDR2 memory. A more detailed description can be found in Section 2.1.

To test the C64 chip hardware features and its software stack, the DEEP emulation system

was created. The DEEP system is the original emulation system for the C64 architecture, which

was specifically designed and built for many-core architecture emulation and verification. Its

unique iterative approach allows the emulation of huge many-core systems with a limited set of

FPGAs [1]. The emulation system supports two different emulation modes. Mode 1 is slower,

but new designs can be tested within minutes. Mode 2 gives maximum performance in terms

of speed, but the whole design needs to be synthesized first and this can take several hours.

The first mode is used during early development, where design changes occur more often. After

the design has matured over time and the amount of changes have been greatly reduced, the

second mode is used to run more extensive tests. A more detailed description of both modes is

presented in Section 2.2.

One of the most important new features that these new many-core chips require is the

ability to provide efficient synchronization constructs. One way to provide this is to enhance

the architecture with hardware support for these constructs. One of the most recent hardware

enhancements is the Synchronization State Buffer (SSB). The SSB is a small buffer which

allows the storage of a limited amount of synchronization state bits, which can be associated

with any memory location. This idea is based on the observation that only a limited amount

of memory locations are undergoing synchronization at the same time. This idea was originally

proposed and implemented in a functional-accurate simulator by Zhu et al. [2]. A more detailed

description of SSB is given in Section 2.3 and 3.

This paper reports a design study based on the C64 many-core architecture using the DEEP

emulation and simulation framework. We conducted a logic design to enhance C64 with the SSB

feature by integrating it into the C64 architecture logic. Finally we carried out a performance

study. This study involves the hardware changes in the existing ISA and memory controller,

as well as software changes related with potential new programming paradigm and compilation

strategies.

Our experiences have demonstrated the following key features that are critical to achieve
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our objectives. In particular, an experimental platform/infrastructure is needed such that:

• In simulation mode - it can compile the logic very fast. The full C64 chip logic can be

compiled in less than two minutes on a normal workstation. This is important during

early development, where a lot of changes occur.

• In emulation mode - it is able to perform full chip logic emulation and provides debugging

support for verification at a reasonable speed for our purpose. This is important, since

exposing some deep, concurrency-related bugs would need weeks, months or even years

of execution time under simulation mode, while it only take a few minutes under full

emulation mode.

• In emulation mode - it can provide high-speed emulation to run parallel applications on

the whole chip, thus allowing us to experiment with novel program paradigms inspired by

SSB and corresponding code generation schemes within reasonable time. It executes our

benchmark programs at well over 20KHz speed (about 1/40,000 of the actual (powerful)

chip speed).

The remainder of the paper is structured as following: Section 2 gives additional background

information about the C64 many-core architecture, the emulation system DEEP, and the fine-

grain synchronization extension SSB. Section 3 explains our design and implementation of SSB

in the C64 architecture. Section 4 shows our observations and findings during this process.

Section 5 gives a overview of related work and Section 6 concludes the paper.

2 Background

2.1 The IBM Cyclops-64 Architecture

The IBM Cyclops-64 (C64) architecture is logically partitioned into 80 homogeneous processors

which are connected to a 96-port crossbar. A processor contains two Thread Units (TUs),

which share one Floating-Point Unit (FPU). Therefore, it is possible to have 160 independent

and concurrent threads running at the same time. Every TU is attached to one SRAM bank.

Each TU can access all SRAM banks via the crossbar. The SRAM banks can be configured

during chip boot-up into two distinct sections. One section of the SRAM bank contributes to

the Global Interleaved Shared Memory; the other section can be used as Scratch Pad memory.

A TU has a direct, low-latency access to its own Scratch Pad. The Scratch Pad of other TUs

can still be accessed through the crossbar. Sequential Consistency is guaranteed for the Global

Interleaved Shared Memory, but not for the Scratch Pad. TUs are in-order single-issue and

out-of-order completion cores and have a quad-ported register file (two read and two write

ports) with 64 × 64bit General Purpose Registers (GPRs). All TUs share a common signal

bus, which provides fast barrier support in hardware. Ten TUs (five processors) share one

Instruction-Cache (IC) and four ICs share one crossbar port. There is no Data Cache (DC).
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Figure 1: IBM Cyclops-64 (C64) Many-Core Architecture: The architecture consists of 80

processors (Processor 0 -79). Each processor has two Thread Units (TUs) called TU0 and

TU1. Both share one Floating-Point Unit (FPU) and one crossbar port (MPG). Each TU is

connected to a SRAM bank, which can be accessed by all other TUs via the crossbar. Ten TUs

share one Instruction-Cache (IC). The system has four on-chip DDR2 memory controllers to

access off-chip memory. The A-Switch is used to connect to the six surrounding neighbors in a

3D-mesh network.

Off-chip DDR2 memory is connected through four on-chip DDR2 memory controllers. Each

memory controller is connected to its own crossbar port. Each chip can be connected to six

neighboring chips in a 3-D mesh network. The network switch is also integrated into the

chip and has six connections to the crossbar. The host interface is connected to two crossbar

ports. In summary, the chip’s crossbar interconnect possesses a total of 96 ports: eighty for

the processors, four ports for the I-cache, four ports for on-chip DDR2 memory controllers, six

ports for inter-chip communication, and two ports for the host interface. A logical overview of

the chip is shown in Figure 1.

The architecture uses a explicit memory hierarchy similar to the one found in the NVIDIA

CUDA or the Cell/B.E. architecture. Moreover, there is no paging or virtual memory support

between all the memory hierarchy segments. More information about the C64 architecture and

its system software can be found here [3, 4, 5].

2.2 Emulation System

The DEEP emulation system was developed in order to both validate the C64 chip’s hardware

features and test its software stack. The challenge and cost in testing new hardware designs lies
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in the difficulty of verifying whether a circuit will work under real-world conditions. Software-

based simulators can get close to the behavior of the real circuit, but take much longer to

execute than the actual hardware. Therefore, it is unrealistic to run enough benchmarks for

a whole chip on existing logic simulators to verify hardware design and / or test its software

stack. Hidden bugs (similar to heissenbugs, mandelbugs, and bohrbugs) must be discovered

by running real-world applications using full system emulation. While high emulation speed

is required, it is very important to quickly respond to logic design changes, especially, at the

early stage of logic design. Although the amount of bugs at the early states of development are

usually high, they are easily found using simple synthetic test cases or small benchmark kernels.

That means turn-around time regarding logic change is more important than emulation speed

- at least during early stages of development. The major objectives of the DEEP emulation

system are to support all design and test stages, to realize good turn-around time for the early

stages and high emulation speed for the later stages, to do the whole chip emulation as well as

to provide an efficient debugging environment.

In order to achieve its main objective, the DEEP system supports two different modes:

simulation mode and emulation mode. The simulation mode is a logic processor based logic

simulation methodology. In this mode, a logic design is translated into logic programs, and then

it is simulated on a large number of logic processors. Generally, a logic design consists of a netlist

of gates and memory cells, and it can always be mapped to a series of primitive logic operations

such as AND, OR, MUX, etc.. Due to simple translation, the DEEP system can quickly generate

logic programs from an original logic design. For instance, the C64 combinatorial logic design,

43 million gates (estimation), can be translated into logic programs within two minutes. The

simulation mode is available on both, a FPGA-based hardware (see Figure 2) and a general

workstation. The DEEP hardware has 32 Altera Stratix II FPGAs(EP2S90F1020C4); 20 for

processing units, 10 for switches, and 2 for host communication. In each processing unit, 20

logic processors are implemented and one logic instruction queue are shared by them.

Since all logic is executed as logic programs, it is easy to check any signals in a target logic

in the simulation mode. Moreover, not only simple signal tracing is possible, but also program

tracing is supported when a processor is simulated. Using program tracing, correctness of a

target benchmarks can be easily confirmed. If an error is discovered, we can switch to signal

tracing or use both tracing strategies although simulation speed slows down considerably. The

key feature of this simulation mode is fast translation into logic programs and good debugging

support.

On the other hand, the emulation mode design is based on an iterative emulation method-

ology [1]. Since the whole many-core architecture design cannot be fitted into a single FPGA

of the DEEP hardware, or any current available FPGA on the market, the architectural design

is separated into submodules, which can fit into a FPGA. Even though each submodule fits

into one FPGA, a lot of FPGAs would be required to implement the entire chip in the emu-

lation system. Furthermore, many hardware resources would be necessary for communication

between submodules in different FPGAs. Instead of mapping each submodule to a different

FPGA, the emulation system adopts an iterative emulation approach [1]. Combinatorial logic
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Figure 2: DEEP: The emulation platform consists of 32 Altera Stratix II FPGAs; 20 for

processing units, 10 for switches, and 2 for host communication.

equivalent submodules are implemented on only one (or a few) FPGAs, and then iteratively

utilized to emulate all instances of the submodule. This emulation method drastically reduces

the required number of FPGAs. Each submodule’s Flip-Flops (FFs) and internal RAM blocks

are isolated from the original design. The content of the FFs and RAMs are independent of

each submodule’s instance, so they must be stored separately. The emulation system utilizes

internal memories for FFs and external memories for RAM blocks, and only the combinatorial

logic is implemented in the FPGA. The flow described above is done by the DEEP software

automatically. By adopting the iterative emulation methodology, huge logic designs, which can-

not fit into existing single FPGA, can be emulated in one or several FPGAs. Because a target

logic design needs to be synthesized and mapped into a FPGA, it takes much more preparation

time than the simulation mode until the logic design is ready to be emulated. However, after

the logic design is mapped into the FPGA, it works as the real logic on an FPGA even though
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it requires to emulate the logic iteratively. In case of the C64 design (with SSB) the average

emulation speed of the whole chip is around 20k cycles/sec. In addition, debugging support

is also necessary in the emulation mode because such support is very helpful to locate a bug

after running benchmarks for a long time. The debugging support feature of the simulation

mode is utilized in the emulation mode. In this mode, all combinatorial logic is mapped into a

FPGA, so it cannot be observed directly. Fortunately, the content of FFs and memory blocks

is reachable because they are stored in memories of the DEEP hardware. Being able to read

this data from the emulation hardware, all signals can be observed by simulating combinatorial

logic on a host workstation of the DEEP system.

2.3 Synchronization State Buffer

The Synchronization State Buffer (SSB) is a hardware extension to the C64 architecture pro-

posed by Zhu et al. [2]. The idea is to add a small buffer to each memory controller. Instead

of tagging the whole memory with additional bits (i.e. full/empty bit), the tags are stored in

the buffer. In this way, the advantages of tagged memory for fine grain synchronization can

be exploited with a smaller increase in memory size. However it also limits the number of

memory locations that can be synchronized at the same time. On the other hand, according

to [2] the number of synchronizations at any given period of time is much smaller than the total

memory and a buffer should be sufficient. If the buffer is full though it can trap and switch

to a software solution. SSB allows to tag every memory location with more than just one bit.

Therefore, several synchronization constructs can be implemented. The original SSB proposed

the following constructs: Read and Write Locks, and Single-Writer-Single-Reader and Single-

Writer-Multiple-Reader synchronization. Nevertheless, any other kind of memory operation

that needs additional state bits, like forwarding memory cells, tracing bits, hardware support

for watchpoints, etc, could be implemented using SSB. The extension was implemented in a

functional-accurate simulator called FAST. For more information please refer to the original

publication [2] and Section 3.

3 Design and Integration of the Synchronization State Buffer

into the Cyclops-64 Architecture

In this section, we will explain the design principles for the Synchronization State Buffer (SSB)

and its integration. Our major interests were the Single-Writer-Single-Reader (SWSR) syn-

chronization operations. The original SSB design has two different SWSR modes. Mode 1

employed a busy-wait approach for the reader until the data is ready. The second mode uti-

lized the sleep-wakeup features of the architecture to reduce crossbar traffic. The operational

semantics for the different Single-Writer-Single-Reader modes are as follow:

Mode 1: Busy-Wait

If the writer is first, then an entry is created in the SSB and the status “SUCCESS” is
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no record SWSR1

swsr1_w / success

swsr1_r / success, value

swsr1_r /

fail

(a) Mode 1: busy-wait

no record

SWSR2

tid = TID

cnt = 1   

swsr2_w / success

SWSR2

cnt = 0

swsr2_r /

success, value

swsr2_r (TID) /

wait

swsr2_w /

tid

(b) Mode 2: sleep-wakeup

Figure 3: Single-Writer-Single-Reader (SWSR) State Diagrams

returned to the writer. When the load arrives, it is allowed to proceed and the entry is

removed from the SSB. The value and the status “SUCCESS” is returned to the reader. If

the reader is first, then no entry is created and the status “FAIL” is returned to the reader.

The reader has to retry until the status “SUCCESS” is returned. The corresponding state

diagram is shown in Figure 3(a).

Mode 2: Sleep-Wakeup

If the writer is first, then an entry is created in the SSB and the status “SUCCESS” is

returned to the writer. When the load arrives, it is allowed to proceed and the entry is

removed from the SSB. The value and the status “SUCCESS” is returned to the reader.

If the reader is first, then an entry is created and the status “WAIT” is returned to the

reader. The reader goes to sleep and waits until it is woken up by the writer. When the

writer arrives second the Thread ID (TID) of the waiting reader is returned. The writer

sends the wakeup signal to the waiting reader. The reader has now to retry the load again.

This time it will succeed and the entry is removed from the SSB. The corresponding state

diagram is shown in Figure 3(b).

We extended all modes to support any size (byte, half word, word and double word) and

signedness (signed and unsigned) of memory operation. We created a new instruction format

to accommodate the requirements of the SSB instructions. The new instruction format accom-

modates the major opcode (OP), the return register (RT ), the address register (RA), the value

register (RB), the SSB opcode (UU ), the size (Sz ) and the signedness (S ). The field X is not

used. The size of each field is shown in Table 1. The UU field is used the specify which SSB

operation is used. A list of the implemented SSB operations is shown in Table 2.

The following list shows the new SSB assembly instructions. Every SSB assembly instruction

has different versions for the different sizes and signedness. For brevity they are reduced to a
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Table 1: SSB OP Format
Field OP RT RA RB UU Sz S X

Size(bit) 4 6 6 6 6 2 1 1

Table 2: SSB OP Opcode

UU SSB OP Description

0 RLock Read Lock

1 WLock Write Lock

2 UnLock Unlock

3 SWSR1 R Single-Writer-Single-Reader Mode 1 Read

4 SWSR1 W Single-Writer-Single-Reader Mode 1 Write

5 SWSR2 R Single-Writer-Single-Reader Mode 2 Read

6 SWSR2 W Single-Writer-Single-Reader Mode 2 Write

7 - 16 reserved n/a

17 - 63 not used n/a

general instruction group.

RLOCK RT,RA

The instruction tries to obtain a read lock on the memory location defined in register RA. This

instruction implicitly writes to two registers. The return code is written to register RT and the

return value is written to register RT+1. A value of 0 in RT means “SUCCESS” and a value

of -1 means “FAIL”. If the read lock was successfully acquired, then the value of the memory

location is available in RT+1.

WLOCK RT,RA

The instruction tries to obtain a write lock on the memory location defined in register RA. This

instruction implicitly writes to two registers. The return code is written to register RT and the

return value is written to register RT+1. A value of 0 in RT means “SUCCESS” and a value

of -1 means “FAIL”. If the read lock was successfully acquired, then the value of the memory

location is available in RT+1.

UNLOCK RT,RA

The instruction tries to unlock a previously acquired read or write lock for the memory location

defined in register RA. The return code is written to register RT. A value of 0 in RT means

“SUCCESS” and a value of -1 means “FAIL”.

SWSR1 R RT,RA

This instructions tries to read a value from the memory location defined in register RA. This

instruction implicitly writes to two registers. The return code is written to register RT and the

return value is written to register RT+1. A value of 0 in RT means “SUCCESS” and a value of

-1 means “FAIL”. If the read was successful, then the value of the memory location is available

in RT+1.
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SWSR1 W RT,RA,RB

This instructions tries to write the value specified in RB to the memory location defined in

register RA. The return code is written to register RT. A value of 0 in RT means “SUCCESS”

and a value of -1 means “FAIL”.

SWSR2 R RT,RA

This instructions tries to read a value from the memory location defined in register RA. This

instruction implicitly writes to two registers. The return code is written to register RT and

the return value is written to register RT+1. A value of 0 in RT means “SUCCESS” and a

value of -2 means “WAIT”. If the read was successful, then the value of the memory location

is available in RT+1.

SWSR2 W RT,RA,RB

This instructions tries to write the value specified in RB to the memory location defined in

register RA. This instruction implicitly writes to two registers. The return code is written to

register RT and the thread id (TID) to RT+1. A value of 0 in RT means “SUCCESS”, a value

of -1 means “FAIL”, and a value of -2 means “NO WAITER”.

The Thread Units (TUs) instruction decoder was extended to support the additional SSB

instructions. Some of the instructions require more then one result register. Due to restrictions

in the instruction format, crossbar package format, and in the register file, we use the result

register and the next following register as bundled result registers. For example the Single-

Writer-Single-Reader instruction swsr1 rd r6,r8 reads a signed double word value from the

address specified in register r8. The return code is written to register r6 and the value is

written to register r7. The write-back register is selected to be the next register after the

return-code register in the register file. The Storage Interface (SI) in the TU was adapted to

handle this special case and to generate crossbar packages for the new instructions if necessary.

SSB was placed in the SI of each TU. The SI is responsible for the arbitration of the memory

requests coming from the network (crossbar) or the TU for the SRAM. Furthermore, it has to

handle returning data from the network to the TU. The diagram in Figure 4 shows the relevant

parts of the SI in the processor for SSB. Memory requests for the SRAM can originate from the

TU or the network. A simple Least-Recently-Used (LRU) schema is used to arbitrate between

these requests. With the addition of SSB, the arbitration schema had to be modified. Since

both TU and network can produce SSB requests, a LRU schema is used at the entrance of SSB.

We also keep the LRU schema for the normal memory requests to the SRAM, but if SSB has a

memory request for the SRAM it takes priority over all other memory requests for the SRAM.

This approach is still fair, because LRU was already performed at the entrance of SSB and due

to the serialization effects of the crossbar interconnect.

The SSB combinatorial logic itself is rather simple and does not require much hardware

resources (less than 4.4%). The only resource that is limited is the size of the SRAM that is used

to store the additional tag information. The SSB in this implementation is 8-way associative

and 39 bit wide for each entry. The required fields for a SSB entry in this architecture are:

State, Cnt, Address, Processor ID (PID), Thread ID (TID), and Size. The size of each field is
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From Network From TU

To Network To TU

Figure 4: Simplified Storage Interface

Table 3: SSB Entry

Field State Cnt Address PID TID Size

Size(bit) 4 8 15 7 3 2

Table 4: SSB States
State Function Description

0 INVALID Invalid

1 RLOCK Read Lock

2 WLOCK Write Lock

3 WRLOCK Write-Recursive Lock

4 SWSR1 Single-Writer-Single-Reader Mode 1

5 SWSR2 Single-Writer-Single-Reader Mode 2

6 - 15 n/a reserved

shown in Table 3. The State field is further explained in Table 4.

The SSB creates special network return packages to accommodate support for SSB return

codes, interrupts and performance counters. The format of the SSB return packages is shown

in Table 5. TrCode specifies the type of package. Int is used to raise a SSB interrupt. The
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Table 5: SSB Return Package

Field TrCode Int Sync SSB Code PID TID Error GPR Data

Size(bit) 6 1 1 3 7 3 1 6 64

interrupt is always risen in the TU that produced it and not in the TU were the SSB is located.

This is necessary, because even if a TU is turned off, its SRAM can still be accessed by other

TUs. Sync is used by the performance counter. It indicates if a SSB load was successful or

not. SSB Code is sign-extended to 64bit and written to the register specified in the GPR field.

PID and TID are used by the crossbar for routing. Error has the same behavior as for normal

memory operations and raises an External interrupt. This normally happens when a user level

store tries to access protected data or a load/store access is outside the valid memory space.

The content of the Data field is written to register GPR+1.

4 Our Observations

During our implementation of the Synchronization State Buffer (SSB) into the IBM Cyclops-

64 (C64) architecture, we encountered several logic bugs. In this section we will describe our

experiences with the simulation and emulation framework and how they helped us to reach our

key observations. A list of the encountered bugs is displayed in Table 6. At the end we were able

to run all our benchmarks successfully until completion and they generated the correct result.

Even for small problem sizes we could observe substantial speedup if SSB synchronization

constructs were used compared to the existing synchronization construct (hardware barrier) of

the original architecture.

Table 6: Hardware and Software Bug List

Bug # Symptom Description Development

Stage

Difficulty of

Discovery

Platform

1 Test program hangs

after SSB instruction

Used the wrong load signal

for a latch during register

read stage of the pipeline.

As result the scoreboard

bits are continuously set and

the following instruction will

wait forever for the bits to be

cleared

early very easy Simulation

continued on next page
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continued from previous page

Bug # Symptom Description Development

Stage

Difficulty of

Discovery

Platform

2 Test program for

SWSR Mode 2 fails

Tag was prematurely re-

moved from the SSB.

early very easy Simulation

3 SSB interrupt Tag was removed when the

state changed from RLock to

WRLock.

early very easy Simulation

4 Memory operations

return wrong results

Redesign of the crossbar

package format changed the

encoding of operations. The

location of the size field is

not fixed and depends on en-

coded operation. As result

the decoder was returning

the wrong size.

early very easy Simulation

5 Test program for SSB

fails

SSB return code was not

sign-extended to 64bit

early very easy Simulation

6 Test program hangs.

Load operations do

not return.

The memory controller has

a return FIFO. If the FIFO

is full it does not accept

any more memory request.

Changes introduced due to

SSB broke the FIFO counter

which blocked the memory

controller after four load op-

erations.

early easy Simulation

7 Small benchmark

fails. Atomic add

does not work.

Changes to the crossbar

package format removed one

bit from the opcode that

atomic memory operations

use.

early easy Simulation

8 Small benchmark

fails. Unexpected

write back to register

file.

Logic bug in memory con-

troller leads to load/store

duplication if SSB was used

one cycle before.

early easy Simulation

9 Test program for SSB

fails. Non-double

word SSB operations

return wrong result.

Memory controller does not

block SSB operations cor-

rectly, because they are de-

layed by one cycle due to

SSB lookup.

late easy Emulation

10 Kernel hangs. The major redesign of the

Storage Interface (SI) due to

Bug 9 created several bugs,

because the interface be-

havior between Thread Unit

(TU), Load Store Multi-

ple (LSM) Unit, Network A

(NA), Network B (NB), SSB

and memory controller were

not completely understood.

late difficult Emulation

continued on next page
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continued from previous page

Bug # Symptom Description Development

Stage

Difficulty of

Discovery

Platform

11 Benchmark hangs,

because load return

package was lost

Bug in crossbar interface.

Only exposed during heavy

network traffic. A normal

return package can get lost,

if the previous return pack-

age was a SSB return pack-

age, which requires two cy-

cles to process.

very late very diffi-

cult

Emulation

12 Benchmark generates

wrong result

Bug in instruction scheduler

of the compiler

very late very diffi-

cult

Emulation

4.1 Key Observations

During the process of implementing SSB in the C64 architecture we deduced the following key

observations thanks to the development and debugging information:

• Fast compilation support during early development phase proved to be very helpful in

designing new features, testing the design and finding bugs. For more details see Section

4.2.

• Full-system emulation was indispensable to find deep buried system bugs. For more details

see Section 4.3.

• High-speed emulation is crucial to run parallel applications and benchmarks for perfor-

mance evaluation. For more details see Section 4.4.

4.2 Fast Compilation and Simulation

During early development, we used the simulation platform to create new architecture designs

within minutes and simulated a smaller C64 chip with just ten Thread Units (TUs). This gave

us faster simulation speed and we could use assembly code from the beginning to test our new

design. This saved us the time of writing tedious unit tests for sub modules. This was especially

helpful, because the interface behavior between certain sub modules were rather complicated

or sometimes unexpected. Most of the bugs (Bug 1-8) were found in simulation mode. Only

very few bugs were found in the SSB core component (Bug 2, 3 & 5). Most of the other bugs

were related to unclear interface behavior (Bug 8) or very simple logic bugs (Bug 1, 4, 6 & 7).

Moreover, after a bug has been discovered in emulation mode and bigger changes were necessary

(Bug 10), switching back again to simulation mode for implementation and initial verification

proved to be very helpful.
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4.3 Full-System Emulation

After we had removed all the bugs we could find in simulation mode with our simple assembly

test cases, we moved the design to emulation mode. Even though it takes more time to synthe-

size the design (around 10 hours), we could run more extensive test cases written in C, which

freed us from the burden of low-level assembly programming. This allowed us to write much

more extensive tests in a shorter amount of time and to run test on the full system. Due to

this, we found two more bugs (Bug 9 & 10).

4.4 High-Speed Emulation

Finally, after all the bugs had been fixed we could run our parallel applications and benchmarks

to validate the performance benefits of fine-grain synchronization. Even though all our test cases

passed, we still encountered a very deep buried system bug (Bug 11) with our benchmarks.

This bug will not show up in the real architecture and is only triggered by our SSB extension.

These kinds of bugs show how important it is not only to do a full-system verification, but to

actually run real parallel applications on the platform. We could not have done this without

our high-speed emulation system. After we fixed the last hardware bug, we were able to run our

benchmarks until completion, but the checksum failed. This time it was the compiler’s fault

(Bug 12). It did not schedule our new SSB instructions correctly. After we fixed this issue, all

the benchmarks ran until completion and produced the correct results.

5 Related Work

There have been many logic verification technologies and products developed in both academia

and industry [6, 7]. These technologies have been used to address the many challenges in the

logic verification processes for a wide range of digital system designs.

The iterative emulation methodology, which is adopted in the emulation mode of DEEP,

was introduced by Dr. Sakane et al. [1] in 2003 and the idea of iterative emulation for identical

logic module instances with an FPGA was invented. They used shift registers to hold the

state bits of a group of identical logic module for their target system of the 32bit Cyclops-E [8]

architecture which has 8 processors. Their emulation system was implemented into one Xilinx

Virtex-II FPGA because of the limited size of the verification target. Moreover, there is no

debugging support, so most of the software debugging was done with a small number of control

registers integrated in the emulation system. From this knowledge and experience base the

development of the DEEP emulation system was nurtured. Key concepts such as importance

of fast turn-around time and good debugging support, and the effectiveness of the iterative

emulation for high emulation speed were born from these experiences.

ASIC based logic verification environments and emulation systems have been developed from

many Electrical Design Automation (EDA) tool vendors. These tools have been designed for
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high emulation speed, fast turn-around time, and powerful logic debugging support. Mentor

Graphics Veloce platform and Cadence Palladimu system are good examples. The Veloce

platform [9] is an ASIC based logic verification system developed by Mentor Graphics. This

hardware accelerated logic simulation platform utilizes a custom designed emulation chip that

contains a programmable logic block for the target logic and a fixed functional block. This

fixed functional block handles signal tracing and interconnecting operations. The target logic

is synthesized, partitioned and mapped into the emulation chip by Veloces software tools.

The many emulation chips in the Veloce box are running in parallel to achieve a very high-

speed emulation environment. The control software provides the interfaces for logic debugging

and external IO simulation. The Palladium platforms [10] from Cadence provide simulation

acceleration and in-circuit emulation in a single system. With its incorporated peripherals,

embedded processors and multiple ASICs, the Palladium platform helps the chip validation

engineers to achieve first silicon and system software required for successful delivery. Both

platforms are gaining popularity among major chip development companies. When it comes to

the many-core system validation project, both platforms have their limitations in capacity and

speed because their target is general logic designs and not many-core processor architectures.

Even though both platforms are commercially available, their prohibitive prices prevent most

academic researchers to have access to them.

The RAMP [11] system developed at Berkeley is a FPGA-based many-core emulation plat-

form. This system deploys Xilinx Vertex-II Pro FPGAs on 16-21 BEE2 boards [12] to implement

a many-core system composed of 1000 plus cores. The purpose of this project is to explore the

architectural design space for future many-core computer architectures and enable early soft-

ware development and debugging. The proposed RAMP Design Framework (RDF) addresses

the challenge of supporting both cycle-accurate emulation of detailed parameterized machine

models and rapid functional-only emulations. Compared with the DEEP system, the RAMP

system is intended to define and create the next generation of tools for computer-architecture

and computer-science research, while the DEEP system was developed to validate the chip logic

design of a real many-core architecture under more demanding requirements for capacity and

speed.

Fine-grain synchronization has been supported in several architectures before, like (HEP

[13], Monsoon, Tera [14], MDP [15], Cedar, Multicube, KSR1, Alewife/Sparcle [16], M-Machine,

J-Machine, [17], Eldorado [18], and others).

6 Summary

We implemented the Synchronization State Buffer (SBB) in the IBM Cyclops-64 (C64) many-

core architecture. We used the DEEP simulation and emulation framework for design and

implementation. We performed full system logic verification and ran parallel applications on

the whole chip in emulation mode. We used the debugging capabilities of simulation and

emulation system extensively to fix all the logic bugs we found in our design. Thanks to the

high speed of our emulation system we were able to easily find hidden bugs, which would have
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been otherwise only encountered after chip production. Based on the bugs we encountered we

concluded that a chip development framework should at least provide the following features:

Fast compilation of the logic design during the early stages of logic design to allow for quick

turn-around times. Our system can compile the full C64 chip logic in less than two minutes for

software simulation.

Full-System hardware emulation with extensive and fast debugging support capabilities is a

must for whole chip logic verification. Fast emulation speed is required to find bugs before the

chip is produced and not years after it has been phased out. DEEP’s emulation mode allows

such bugs to be found very quickly.

High-Speed hardware emulation (over 20KHz) of the whole system is an invaluable tool for

system software development, performance prediction and evaluation. Important user applica-

tions can be run before chip production to validate the key features of the new design and its

actual performance impact. This also allows the experimentation of novel program and code

generation paradigms within reasonable time.

We believe that development system that incorporate these key features will have an tremen-

dous impact on future architecture design methodologies and time-to-market.

This emulation environment will allow us to further research new hardware features and

enhancements. We intend on implementing other synchronization constructs with more favor-

able properties and perform an in-depth performance evaluation and hardware resource cost

analysis.
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